More results on Schur complements in Euclidean Jordan algebras

نویسندگان

  • Roman Sznajder
  • M. Seetharama Gowda
  • Melania M. Moldovan
چکیده

In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any Schur complement of a strictly diagonally dominant element is strictly diagonally dominant. We also introduce the concept of Schur product of a real symmetric matrix and an element of a Euclidean Jordan algebra when its Peirce decomposition with respect to a Jordan frame is given. An Oppenheim type inequality is proved in this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras

In this paper, using Schur complements, we prove various inequalities in Euclidean Jordan algebras. Specifically, we study analogues of the inequalities of Fischer, Hadamard, Bergstrom, Oppenheim, and other inequalities related to determinants, eigenvalues, and Schur complements.

متن کامل

Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras

Article history: Received 5 May 2009 Accepted 15 November 2009 Available online 22 December 2009 Submitted by H. Schneider

متن کامل

On the Inheritance of Some Complementarity Properties by Schur Complements

In this paper, we consider the Schur complement of a subtransformation of a linear transformation defined on the product of two finite dimensional real Hilbert spaces, and in particular, on two Euclidean Jordan algebras. We study complementarity properties of linear transformations that are inherited by principal subtransformations, principal pivot transformations, and Schur complements.

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Alternating Schur Series and Necessary Conditions for the Existence of Strongly Regular Graphs

Considering the Euclidean Jordan algebra of the real symmetric matrices endowed with the Jordan product and the inner product given by the usual trace of matrices, we construct an alternating Schur series with an element of the Jordan frame associated to the adjacency matrix of a strongly regular graph. From this series we establish necessary conditions for the existence of strongly regular gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012